skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Klein, A.R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Beta-lactam antibiotics, which are used extensively in human and veterinary applications, are commonly detected in surface waters. To examine how the distinct structures of different generations of beta-lactam antibiotics can influence their persistence or degradation in environmental aqueous media, we examined the fate of two penams (amoxicillin and cloxacillin) and two cephems (cephalexin and ceftriaxone) at pH 5.0 and pH 7.0. By contrast to the lack of hydrolysis of the penam antibiotics at both pHs, we observed hydrolysis of cephalexin at pH 7.0 (t1/2 = 12 d) and ceftriaxone at pH 5.0 (t1/2 = 2.8 d). Using high-performance liquid chromatography coupled with a diode array detector or a high-resolution mass spectrometer, we were able to confirm thiotriazinone and 3-desacetyl cefotaxime as major hydrolysis products of ceftriaxone, and propose the hydrolytic cleavage of the benzene and cephem moieties from cephalexin. In addition, we studied the effects of smectite clay particles suspended in solutions without or with dissolved organic matter. The adsorption capacity of the clay was 4- to 9-fold higher at pH 7.0 than at pH 5.0. Subsequent X-ray diffraction analysis revealed that the antibiotic adsorption was not within the clay interlayer nanopores but occurred primarily on the external clay surfaces. The addition of dissolved organic matter interfered with the adsorption of a cephem antibiotic (ceftriaxone) on the clay, but the adsorption of a penam antibiotic (amoxicillin) remained unaffected. We employed molecular modeling simulations to probe the mechanisms of adsorption on the mineral surface. Our findings offer new insights on how the compound structures can dictate different fates of the beta-lactam class of antibiotics in environmental media. 
    more » « less